

ISCB 2016 Students' day

Introductior

Materials

Methods

Results

Discussion

The use of joint models for longitudinal and time-to-event data: an application on kidney transplantation

Marie-Cécile Fournier

EA4275 methodS for Patients-centered outcomes and HEalth ResEarch, ITUN INSERM UMR1064, Nantes university

August, 25th 2016

Objectives of my talk

ntroductior

Patient-centered outcomes

& HEalth BosEarch

Materials

SPHER

Methods

Results

Discussion

1 To present an application of shared random effect multivariable joint model in renal transplantation

Ear J Epidemiol DOI 10.1007/s10654-016-0121-2

www.divat.fr

Jantes

Vietropole

CLINICAL EPIDEMIOLOGY

A joint model for longitudinal and time-to-event data to better assess the specific role of donor and recipient factors on long-term kidney transplantation outcomes

```
Marie-Cécile Fournier<sup>1,2</sup> · Yohann Foucher<sup>1</sup> · Paul Blanche<sup>3</sup> · Fanny Buron<sup>4</sup> · Magali Giral<sup>2,5</sup> · Etienne Dantan<sup>1</sup>
```

2 To discuss the usefulness and limits of such complex models in clinical applications

In chronic diseases:

Introduction

Materials

Methods

Results

Discussion

Longitudinal markers allow to follow patient evolution
 → helpful to determine the most beneficial care

Occurrence of events is overseen

In chronic diseases:

Introduction

- Materials
- Methods
- Results
- Discussion

- Longitudinal markers allow to follow patient evolution
 → helpful to determine the most beneficial care
- Occurrence of events is overseen

In renal transplantation:

- Serum creatinine (SCr) is routinely measured during the follow-up
- · 2 major events:
 - graft loss (return to dialysis or retransplantation)death with a functioning graft
- · Graft failure is a major clinical event of interest

It is well-known that:

 \nearrow SCr is associated with \nearrow graft failure risk

Specific role of factors ?

Introduction

- Materials
- Methods
- Results
- Discussior

Solution Solution State (Rizopoulos, Chapman & Hall 2012)

Introduction Materials Methods Results

The DIVAT cohort (www.divat.fr):

- = Données Informatisées et VAlidées en Transplantation
- \Rightarrow computerized and validated data in transplantation

French observational and prospective cohort

- 2749 Kidney recipients
- Transplanted between 2000 and 2014
- · SCr measurements: yearly recorded
 - 4 SCr measurements / patient were recorded in median
- Event: Graft failure
 - 481 events observed
 - · Median follow-up time: 4 years

Statistical analyses Shared random effect approach

ntroductio

Materials

Methods

Results

Discussion

Submodel hypotheses are checked separetely:

Longitudinal process:

- logarithmic transformation of SCr values
- \Rightarrow for the linearity and homoscedasticity of the residuals
 - 2 random effects included (baseline value and slope)
 - unstructured variance-covariance matrix
- Survival process:
 - · no variable with time-dependent effect
 - categorization of some continuous variables

Quantitative variables are standardized (as recommended in *Rizopoulos 2012*)

Statistical analyses shared random effect approach

Introduction

Materials

Methods

Results

Discussion

Modeling strategy:

1 Specification is defined in a crude joint model:

- baseline risk function type (Weibull)
- dependence type (level and slope)

2 Covariate selection:

- univariable analyses (3 fixed effects/variable: on baseline log(SCr), on log(SCr) slope & on graft failure risk)
- non significant effect removed in backward way (5%)
- multivariable joint model: stepwise inclusion of significant variables
- R software (3.0.1 version) with the JM package (1.3 version) (*Rizopoulos 2010*)

www.divat.fr SPHERE Di√at methodS in Patient-centered outcomes & HEalth ResEarch

Results

	Lo	ongitudin	al proces	ss	Surv	ival process
	1-yr SCr	<i>p</i> -value	5-yr SCr	<i>p</i> -value	HR	p-value
Current value of SCr (µmol/L), for 25% growth	l				1.92	< 0.0001
Current slope of log(SCr), for 25% growth					1.89	0.0097
Recipient age (for a 10 years increase)	-2.0%	< 0.0001	-5.6%	< 0.0001	1.35	< 0.0001
Recipient gender (male vs female)	7.7%	< 0.0001	4.0%	0.0392		
Diabetes histories (yes vs no)	0.0%	0.9866	14.5%	< 0.0001		
Cardiovascular histories (yes vs no)	0.0%	0.9812	4.1%	0.0371	1.39	0.0011
3-month SCr (for a 50 μ mol/L increase)	8.1%	< 0.0001	8.1%	< 0.0001	0.84	0.0062
6-month SCr (for a 50 μ mol/L increase)	18.0%	< 0.0001	18.0%	< 0.0001		
Acute rejection episode in 1st year (yes vs no)	5.7%	< 0.0001			1.46	0.0010
Anticlass I immunization (+ vs -)	0.0%	0.2707	6.7%	0.0036	1.50	0.0006
Rank of graft: second vs first					1.32	0.0381
Donor type (ref: living donor)		0.0773		0.0022		
Cerebrovascular death	2.8		12.5%			
Non cerebrovascular death	1.9		7.1%			
Donor gender (male vs female)					0.83	0.0589
Donor age (for a 10 years increase)	5.8%	< 0.0001	5.8%	< 0.0001		

Multivariable joint model

(n=2584 patients)

RC: Relative Change; SCr: Serum Creatinine

Key message

Methods

Results

Discussion

- Joint models are interested
 - allow to account for the dynamic evolution of the SCr and the informative censoring process...
 - well for endogenous variable
 - for their epidemiological view of chronic disease
 evolution

but they are limited:

- time-consuming ++
- with several step (h₀, dependance)
- surprisingly, not really different than mixed model + time-dependent cox model in our application

How can we do to improve their use in clinical trials ?