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INTRODUCTION

Ï Era of personalized medicine

Ï Prediction scores of major clinical events can help physicians in the patient taking care
Ï Chronic disease context :
. longitudinal markers: routinely measured to assess the patient’s health evolution

⇒ may bring information to update predictions all along the patient follow-up

Dynamic predictions
Ï Computed from:
. landmarking (Nicolaie et al. 2013; Van Houwelingen and Putter 2012)
. joint modeling (Rizopoulos 2011; Proust-Lima and Taylor 2009)

Accuracy should be assessed accounting for dynamic setting and censoring issue
Ï Discrimination: subjects with high/low predicted risk are more/less likely to experience the event
Ï Calibration: if x subjects out of 100 experienced the event, we expect a mean predicted values at x for

these subjects (Steyerberg et al. 2010)

. Dynamic ROC curve, easily interpretable, evaluates discrimination but not calibration.

. Brier Score (a mean squared error of prediction) assesses both discrimination and calibration, but the
trend according to landmark times is not straightforward
Bthe curve of Brier Scores according to s can be misleading

OBJECTIVE

To provide an R2-type criterion to evaluate dynamic prediction
Principle: to introduce a benchmark value to standardize the Brier Score

MATERIALS AND METHODS

Ï Notations :
. i : the subject ; s: the landmark time; t : the horizon window.
. T : the time-to-event; C: the censoring time
. T̃ =min(T ,C): the observed time of follow-up and ∆= 1{T ≤C}, with 1{·} the indicator function.
. D(s, t)= 1{s < T ≤ s+ t}: the indicator of event in (s,s+ t)
. π(s, t) P(D(s, t)= 1|H π(s),T > s): the subject-specific dynamic prediction with H π(s): the observed

subject-specific characteristics at landmark time s.

Ï Brier Score (the lower the better) : BSπ(s, t)= E
[(

D(s, t)−π(s, t)
)2∣∣∣T > s

]
,

. BS ≈ Bias 2 + Variance

. Evaluates both discrimination and calibration:

BSπ(s, t)=
Discrimination︷ ︸︸ ︷

E
[
Var{D(s, t)|H (s)}

∣∣T > s
]
+ E

[{
E[D(s, t)|H (s)]−π(s, t)

}2∣∣T > s
]

︸ ︷︷ ︸
Calibration

. Depends on the proportion of events in (s,s+ t) through the calibration term: an increasing or decreasing
trend can be due to changes in:
Ï the quality of the predictions

AND/OR
Ï in the at-risk population

Ï R2 criterion (the higher the better)
. Benchmark value : the best "null" model (or marginal) gives the same predicted risk for all subject:
π0(s, t)=P(s < T < s+ t |T > s)= 1−S(s+ t |s) with S(·) is the survival function. It can be estimated from
the Kaplan-Meier estimator. It is free of any choice of modelisation.
BS0(s, t)=Var{D(s, t)|T > s} =S(s+ t |s){1−S(s+ t |s)}

R2(s, t)= 1−BSπ(s, t)
BS0(s, t)

. the scale can be easily understanding compared to those of the Brier Score.
INTERPRETATION:
Ï R2(s, t)= 1⇔ π(s, t)=D(s, t): the prediction tool perfectly distinguish patients that will experience an

event in (s, s+t] from those who will not.
Ï R2(s, t)≈ 0⇔ π(s, t)≈π0(s, t)
Ï R2(s, t)< 0 when the subject-specific information is wrongly used (⇒ extreme cases where the

predictions performed worst than the marginal ones, with over fitted predictions for example).

Ï Use of the Inverse Probability of Censoring Weighting (IPCW) to make inference (like in Blanche et al. 2015)
Ï Pointwise confidence intervals are constructed using a Wald-type confidence intervals
Ï Confidence bands over the landmark times are computed using a resampling method

SIMULATION STUDY

Ï Simulations studies have been carried out to
. show the usefulness of R2 curve in contrast to the Brier Score or the AUC curves ;
. study the behaviour of the inference of R2 curve.

Ï Data were simulated from a shared random effect joint models for longitudinal and time to event data. 500
simulations were done with a sample size of 1,000 and 3,000.

RESULTS OF THE SIMULATION STUDY

Ï In the scenario presented here, the proportion of events increase considerably according to the landmark
time (10% at s = 0 to 55% at s = 5.5).

Ï BS curve ↗ (at least at the beginning) = accuracy of predictions ↘ ... But surprinsingly, NOT: R2-curve ↗.
This is due to the fact that the BS curve of the marginal predictions follows a parallel trend.

Ï Satisfied results concerning the behaviour of the estimations

APPLICATION IN RENAL TRANSPLANTATION

Ï Context:
. 4,121 kidney recipients from the French prospective DIVAT cohort (www.divat.fr)

. Divided into training (2/3: n=2,749) and validation (1/3: n=1,372)

. Longitudinal marker: Serum creatinine, yearly measured

. Event: Kidney graft failure (return to dialysis or death with a functioning graft).

. landmark times s ∈ {0,0.5, ...,5} and time horizon t = 5 years for a medium-term prognosis.

. Some scores already exist in kidney transplantation (Foucher et al. 2010; Lorent et al. 2016) but they did
not integrate repeated measurements.

Ï Dynamic predictions calculated on validation sample from a shared random effect joint model estimated on
the learning data set (corresponding to a simplified version of a previous work (Fournier et al. 2016)).

. Intervals confidence and confidence bands are rather large because of the important censoring process.

CONCLUSION

Ï R2 criterion is closely related to the popular concept of "explained variation"
. summarizes calibration AND discrimination simultaneously
. has an understandable trend

Ï Others simulations are in process to show difference of interpretations between AUC curve and R2 curve.
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