Faculty of Health Sciences

R²-type Curves for Dynamic Predictions from Joint Longitudinal-Survival Models

Inference & application to prediction of kidney graft failure

Paul Blanche

joint work with M-C. Fournier & E. Dantan (Nantes, France)

July 2015 Slide 1/29

Context & Motivation

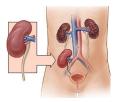
- Medical researchers hope to improve patient management using **earlier diagnoses**
- Statisticians can help by fitting prediction models
- The making of so-called **"dynamic"** predictions has recently received a lot of attention
- In order to be useful for medical practice, predictions should be "accurate"

How should we evaluate dynamic prediction accuracy?

Data & Clinical goal

► Data:

DIVAT cohort data of kidney transplant recipients (subsample, n = 4, 119)



► Clinical goal:

- Dynamic prediction of risk of kidney graft failure (death or return to dialysis)
- Using repeated measurements of serum creatinine

DIVAT data sample (n=4,119)

- French cohort
- Adult recipients
- Transplanted after 2000
- Creatinine measured every year

(www.divat.fr)

DIVAT data sample (n=4,119)

- French cohort
- Adult recipients
- Transplanted after 2000
- Creatinine measured every year
- 6 centers

(www.divat.fr)

Statistical challenges discussed

How to evaluate and/or compare dynamic predictions?

► Using concepts of:

- Discrimination
- Calibration
- ► Accounting for:
 - Dynamic setting
 - Censoring issue

Basic idea: comparing predictions and observations

Basic idea: comparing predictions and observations (simple!)

Basic idea: comparing predictions and observations (simple!)

Concepts:

► Discrimination:

Basic idea: comparing predictions and observations (simple!)

Concepts:

► Discrimination:

A model has high discriminative power if the range of predicted risks is wide and subjects with low (high) predicted risk are more (less) likely to experience the event.

► Calibration:

Basic idea: comparing predictions and observations (simple!)

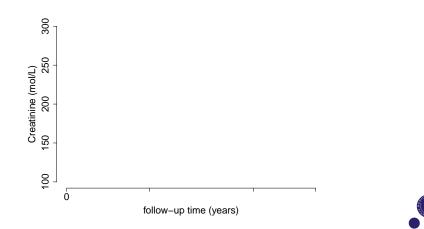
Concepts:

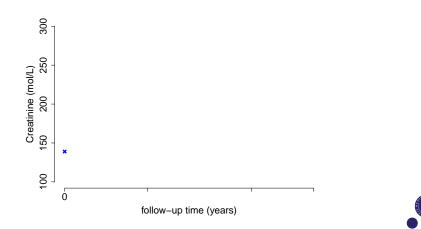
► Discrimination:

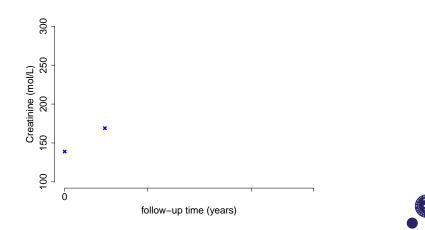
A model has high discriminative power if the range of predicted risks is wide and subjects with low (high) predicted risk are more (less) likely to experience the event.

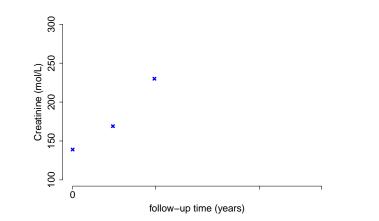
► Calibration:

A model is calibrated if we can expect that x subjects out of 100 experience the event among all subjects that receive a predicted risk of x% ("weak" definition).

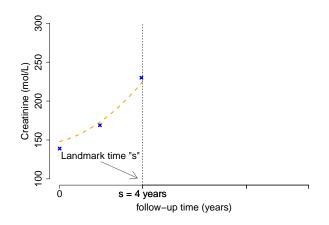




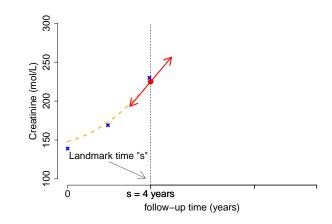




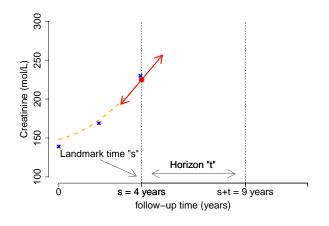
• s: Landmark time at which predictions are made (varies)



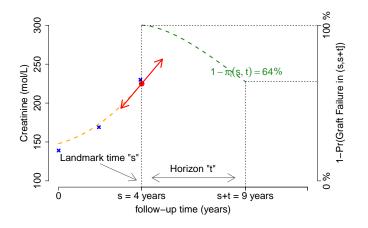
• s: Landmark time at which predictions are made (varies)



- s: Landmark time at which predictions are made (varies)
- t: prediction horizon (fixed)



- s: Landmark time at which predictions are made (varies)
- t: prediction horizon (fixed)



Right censoring issue

Landmark time s (when predictions are made) (end of prediction window)

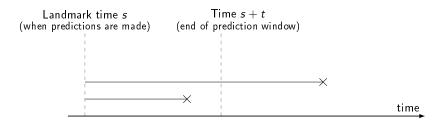
Time s + t

time

$$D_i(s,t) = \mathbbm{1}\{ ext{event occurs in } (s,s+t]\}$$

Right censoring issue

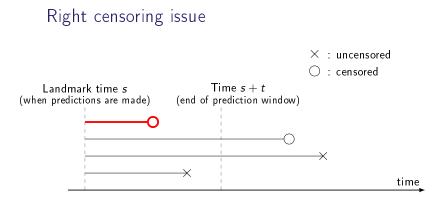
imes : uncensored



 $D_i(s,t) = \mathbb{1}\{\text{event occurs in } (s,s+t]\}$

Right censoring issue \times : uncensored ○ : censored Time s + tLandmark time s (when predictions are made) (end of prediction window) × \times time

$$D_i(s,t) = \mathbb{1}\{$$
event occurs in $(s,s+t]\}$



For subject *i* censored within (s, s + t] the status

$$D_i(s,t) = 1\!\!1\{ ext{event occurs in } (s,s+t]\}$$

is unknown.

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

► Dynamic predictions:

 $\pi_i(s,t)$

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

► Dynamic predictions:

$$\pi_i(s,t) = \widehat{\mathbb{P}}_{\widehat{\boldsymbol{\xi}}}\Big(egin{array}{c} & \end{pmatrix}$$

• $\widehat{m{\xi}}$: previously estimated parameters (from independent training data)

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

► Dynamic predictions:

$$\pi_i(s,t) = \widehat{\mathbb{P}}_{\widehat{\boldsymbol{\xi}}}\Big(D_i(s,t) = 1\Big|$$

• $\widehat{m{\xi}}$: previously estimated parameters (from independent training data)

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

► Dynamic predictions:

$$\pi_i(s,t) = \widehat{\mathbb{P}}_{\widehat{oldsymbol{\xi}}} \Big(D_i(s,t) = 1 \Big| \, \mathcal{T}_i > s, \mathcal{Y}_i(s), \quad \Big)$$

- $\widehat{oldsymbol{\xi}}$: previously estimated parameters (from independent training data)
- $\mathcal{Y}_i(s)$: marker measurements observed before time s

▶ Indicator of event in (s, s + t]:

$$D_i(s,t) = \mathbb{1}\{s < T_i \leq s+t\}$$

where T_i is the time-to-event.

► Dynamic predictions:

$$\pi_i(s,t) = \widehat{\mathbb{P}}_{\widehat{oldsymbol{\xi}}}\Big(D_i(s,t) = 1 \,\Big|\, \mathcal{T}_i > s, \mathcal{Y}_i(s), oldsymbol{\mathsf{X}}_i\Big)$$

- $\widehat{oldsymbol{\xi}}$: previously estimated parameters (from independent training data)
- $\mathcal{Y}_i(s)$: marker measurements observed before time s
- X_i: baseline covariates

Predictive accuracy

How close are the predicted risks $\pi_i(s, t)$ to the "true underlying" risk $\mathbb{P}(\text{event occurs in } (s,s+t]|\text{information at } s)$?

Predictive accuracy

How close are the predicted risks $\pi_i(s, t)$ to the "true underlying" risk $\mathbb{P}(\text{event occurs in } (s,s+t]|\text{information at } s)$?

Prediction Error:

$$\left|\mathsf{PE}_{\pi}(s,t) = \mathbb{E}\left[\left\{D(s,t) - \pi(s,t)
ight\}^2 \middle| T > s
ight]
ight.$$

Predictive accuracy

How close are the predicted risks $\pi_i(s, t)$ to the "true underlying" risk $\mathbb{P}(\text{event occurs in } (s,s+t]|\text{information at } s)$?

Prediction Error:

$$\mathsf{PE}_{\pi}(s,t) = \mathbb{E}\left[\left\{D(s,t) - \pi(s,t)
ight\}^2 \middle| T > s
ight]$$

- the lower the better
- $PE \approx Bias^2 + Variance$
- evaluates both Calibration and Discrimination
- depends on $\mathbb{P}(\text{event occurs in } (s,s+t]|\text{at risk at s})$
- often called "Expected Brier Score"

$$\mathsf{PE}_{\pi}(s,t) = \mathbb{E}\left[\left\{D(s,t) - \pi(s,t)\right\}^{2} \middle| T > s\right]$$

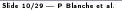
$$\mathsf{PE}_{\pi}(s,t) = \mathbb{E}\Big[\Big\{D(s,t) - \mathbb{E}\big[D(s,t)\big|\mathcal{H}^{\pi}(s)\big] \\ + \underbrace{\mathbb{E}\big[D(s,t)\big|\mathcal{H}^{\pi}(s)\big]}_{\text{``true underlying'' risk}} - \pi(s,t)\Big\}^{2}\Big|T > s\Big]$$

$$\begin{aligned} \mathsf{PE}_{\pi}(s,t) = & \mathbb{E}\Big[\Big\{D(s,t) - \mathbb{E}\big[D(s,t)\big|\mathcal{H}^{\pi}(s)\big]\Big\}^{2}\Big|T > s\Big] \\ & + \mathbb{E}\Big[\Big\{\underbrace{\mathbb{E}\big[D(s,t)\big|\mathcal{H}^{\pi}(s)\big]}_{\text{``true underlying'' risk}} - \pi(s,t)\Big\}^{2}\Big|T > s\Big] \end{aligned}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time s.

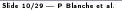
$$\mathsf{PE}_{\pi}(s,t) = \underbrace{\mathbb{E}\left[\left\{D(s,t) - \mathbb{E}\left[D(s,t) \middle| \mathcal{H}^{\pi}(s)\right]\right\}^{2} \middle| T > s\right]}_{\mathsf{Inseparability}} + \underbrace{\mathbb{E}\left[\left\{\mathbb{E}\left[D(s,t) \middle| \mathcal{H}^{\pi}(s)\right] - \pi(s,t)\right\}^{2} \middle| T > s\right]}_{\mathsf{Bias}/\mathsf{Calibration}}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time *s*.



$$\mathsf{PE}_{\pi}(s,t) = \underbrace{\mathbb{E}\left[\mathsf{Var}\left\{ D(s,t) \middle| \mathcal{H}^{\pi}(s) \right\} \middle| T > s \right]}_{\mathsf{Discrimination}} \\ + \underbrace{\mathbb{E}\left[\left\{ \mathbb{E}\left[D(s,t) \middle| \mathcal{H}^{\pi}(s) \right] - \pi(s,t) \right\}^{2} \middle| T > s \right]}_{\mathsf{Calibration}}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time s.



$$\mathsf{PE}_{\pi}(s,t) = \underbrace{\mathbb{E}\left[\mathsf{Var}\left\{D(s,t)|\mathcal{H}^{\pi}(s)\right\}\middle| T > s\right]}_{\mathsf{Discrimination}} + \underbrace{\mathbb{E}\left[\left\{\mathbb{E}\left[D(s,t)|\mathcal{H}^{\pi}(s)\right] - \pi(s,t)\right\}^{2}\middle| T > s\right]}_{\mathsf{Calibration}}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time s.

▶ the more discriminating $\mathcal{H}^{\pi}(s)$ the smaller $\operatorname{Var}\{D(s,t)|\mathcal{H}^{\pi}(s)\}$

$$\mathsf{PE}_{\pi}(s,t) = \underbrace{\mathbb{E}\left[\mathsf{Var}\left\{D(s,t)|\mathcal{H}^{\pi}(s)\right\}\middle| T > s\right]}_{\mathsf{Discrimination}} + \underbrace{\mathbb{E}\left[\left\{\mathbb{E}\left[D(s,t)|\mathcal{H}^{\pi}(s)\right] - \pi(s,t)\right\}^{2}\middle| T > s\right]}_{\mathsf{Calibration}}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time *s*.

▶ the more discriminating $\mathcal{H}^{\pi}(s)$ the smaller $\operatorname{Var}\{D(s,t)|\mathcal{H}^{\pi}(s)\}$ ▶ $\mathbb{E}[D(s,t)|\mathcal{H}^{\pi}(s)] - \pi(s,t) \equiv 0$ defines "strong" calibration.

$$\mathsf{PE}_{\pi}(s,t) = \underbrace{\mathbb{E}\Big[\mathsf{Var}\big\{D(s,t)\big|\mathcal{H}^{\pi}(s)\big\}\Big|T > s\Big]}_{\mathsf{Does NOT depend on } \pi(s,t)} + \underbrace{\mathbb{E}\Big[\big\{\mathbb{E}\big[D(s,t)\big|\mathcal{H}^{\pi}(s)\big] - \pi(s,t)\big\}^{2}\Big|T > s\Big]}_{\mathsf{Depends on } \pi(s,t)}$$

 $\mathcal{H}^{\pi}(s) = \{\mathcal{X}^{\pi}(s), T > s\}$ denotes the subject-specific history at time s.

▶ the more discriminating $\mathcal{H}^{\pi}(s)$ the smaller $\operatorname{Var}\{D(s,t)|\mathcal{H}^{\pi}(s)\}$ ▶ $\mathbb{E}[D(s,t)|\mathcal{H}^{\pi}(s)] - \pi(s,t) \equiv 0$ defines "strong" calibration.

R_{π}^2 -type criterion

► Benchmark PE₀

The **best "null" prediction tool**, which gives the same (marginal) predicted risk

$$S(s+t|s) = \mathbb{E}[D(s,t)|\mathcal{H}^0(s)], \qquad \mathcal{H}^0(s) = \{T > s\}$$

to all subjects leads to

$$extsf{PE}_0(s,t) = extsf{Var}\{D(s,t)|T>s\} = S(s+t|s)\Big\{1-S(s+t|s)\Big\}.$$

R_{π}^2 -type criterion

► Benchmark PE₀

The **best "null" prediction tool**, which gives the same (marginal) predicted risk

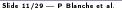
$$S(s+t|s) = \mathbb{E}[D(s,t)|\mathcal{H}^{0}(s)], \qquad \mathcal{H}^{0}(s) = \{T > s\}$$

to all subjects leads to

$$extsf{PE}_0(s,t) = extsf{Var}\{D(s,t)|T>s\} = S(s+t|s)\Big\{1-S(s+t|s)\Big\}.$$

► Simple idea

$${\mathsf R}^2_\pi(s,t) = 1 - rac{{\mathsf P}{\mathsf E}_\pi(s,t)}{{\mathsf P}{\mathsf E}_0(s,t)}$$



Why bother?

- ► $R_{\pi}^2(s, t)$ aims to circumvent the difficult interpretation of:
 - the scale on which PE(s, t) is measured
 - interpretation for trend of PE(s, t) vs s

Why bother?

► $R_{\pi}^2(s, t)$ aims to circumvent the difficult interpretation of:

- the scale on which PE(s, t) is measured
- interpretation for trend of PE(s, t) vs s

► Because the meaning of **the scale on which PE(s,t) is measured changes with s**, an increasing/decreasing trend can be due to changes in:

- the quality of the predictions
- and/or the at risk population

Changes in the quality of the predictions

"Essentially, all models are wrong, but some are useful.", G. Box

Changes in the quality of the predictions

"Essentially, all models are wrong, but some are useful.", G. Box

► The prediction model from which we have obtained the predictions can be "more wrong" for some *s* than for some others.

- Calibration term of PE(s, t) changes with s
- We can work on it!

Changes in the at risk population

An example:

- Patients with cardiovascular history (CV) all die early.
- Only those without CV remain at risk for late s.
- Then:
 - the earlier s the more homogeneous the at risk population
 - CV is useful for prediction for early s but useless for late s.

Changes in the at risk population

An example:

- Patients with cardiovascular history (CV) all die early.
- Only those without CV remain at risk for late s.
- Then:
 - the earlier s the more homogeneous the at risk population
 - CV is useful for prediction for early s but useless for late s.

► The available information can be more informative for some s than for some others.

- Discriminating term of PE(s, t) changes with s
- This is just how it is, there is nothing we can do!

(we can only work with the data we have)

► Always true:

Measure of how the prediction tool $\pi(s, t)$ performs compared to the benchmark null prediction tool, which gives the same predicted risk to all subjects (marginal risk).

► Always true:

Measure of how the prediction tool $\pi(s, t)$ performs compared to the benchmark null prediction tool, which gives the same predicted risk to all subjects (marginal risk).

► When predictions are calibrated (strongly):

$$R_{\pi}^{2}(s,t) = \frac{\mathsf{Var}\{\pi(s,t)|T>s\}}{\mathsf{Var}\{D(s,t)|T>s\}}$$

explained variation

(after little algebra)

► Always true:

Measure of how the prediction tool $\pi(s, t)$ performs compared to the benchmark null prediction tool, which gives the same predicted risk to all subjects (marginal risk).

► When predictions are calibrated (strongly):

$$R_{\pi}^{2}(s,t) = \frac{\operatorname{Var}\{\pi(s,t)|T > s\}}{\operatorname{Var}\{D(s,t)|T > s\}}$$
explained variation
$$= \operatorname{Corr}^{2}\{D(s,t), \pi(s,t)|T > s\}$$
correlation

► Always true:

Measure of how the prediction tool $\pi(s, t)$ performs compared to the benchmark null prediction tool, which gives the same predicted risk to all subjects (marginal risk).

► When predictions are calibrated (strongly):

$$R_{\pi}^{2}(s,t) = \frac{\operatorname{Var}\{\pi(s,t)|T > s\}}{\operatorname{Var}\{D(s,t)|T > s\}}$$
explained variation
$$= \operatorname{Corr}^{2}\{D(s,t), \pi(s,t)|T > s\}$$
correlation
$$= \mathbb{E}\{\pi(s,t)|D(s,t) = 1, T > s\}$$
mean risk difference
$$- \mathbb{E}\{\pi(s,t)|D(s,t) = 0, T > s\}.$$

(after little algebra)

► Observations (i.i.d.)

 $\Big\{ \big(\widetilde{T}_i, \Delta_i, \pi_i(\cdot, \cdot)\big), i = 1, \dots, n \Big\} \quad \text{where } \widetilde{T}_i = T_i \wedge C_i, \ \Delta_i = \mathbbm{1}\{T_i \leq C_i\}$

► Observations (i.i.d.)

 $\Big\{\big(\widetilde{T}_i,\Delta_i,\pi_i(\cdot,\cdot)\big), i=1,\ldots,n\Big\} \quad \text{where } \widetilde{T}_i=T_i\wedge C_i, \ \Delta_i=1\!\!1\{T_i\leq C_i\}$

▶ Indicator of "observed event occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = \mathbbm{1}\{s < \widetilde{T}_i \le s+t, \Delta_i = 1\} = \left\{ egin{array}{cccc} 1 & : ext{ event occurred} \ 0 & : ext{ event did not occur} \ & ext{ or censored obs.} \end{array}
ight.$$

► Observations (i.i.d.)

 $\Big\{ \big(\widetilde{T}_i, \Delta_i, \pi_i(\cdot, \cdot) \big), i = 1, \dots, n \Big\} \quad \text{where } \widetilde{T}_i = T_i \wedge C_i, \ \Delta_i = \mathbbm{1}\{ T_i \leq C_i \}$

▶ Indicator of "observed event occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = 1\!\!1\{s < \widetilde{T}_i \le s+t, \Delta_i = 1\} = \left\{egin{array}{ccc} 1 & : ext{ event occurred} \ 0 & : ext{ event did not occur} \ & ext{ or censored obs.} \end{array}
ight.$$

► Inverse Probability of Censoring Weighting (IPCW) estimator:

$$\widehat{\mathsf{PE}}_{\pi}(s,t) = rac{1}{n} \sum_{i=1}^{n} \left\{ \widetilde{D}_{i}(s,t) - \pi_{i}(s,t) \right\}^{2}$$

► Observations (i.i.d.)

 $\Big\{ \big(\widetilde{T}_i, \Delta_i, \pi_i(\cdot, \cdot)\big), i = 1, \dots, n \Big\} \quad \text{where } \widetilde{T}_i = T_i \wedge C_i, \ \Delta_i = 1\!\!1 \{T_i \leq C_i\}$

▶ Indicator of "observed event occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = 1\!\!1\{s < \widetilde{T}_i \le s+t, \Delta_i = 1\} = \left\{egin{array}{ccc} 1 & : ext{ event occurred} \ 0 & : ext{ event did not occur} \ & ext{ or censored obs.} \end{array}
ight.$$

► Inverse Probability of Censoring Weighting (IPCW) estimator:

$$\widehat{PE}_{\pi}(s,t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{W}_{i}(s,t) \left\{ \widetilde{D}_{i}(s,t) - \pi_{i}(s,t) \right\}^{2}$$

► Observations (i.i.d.)

 $\left\{ \left(\widetilde{T}_{i}, \Delta_{i}, \pi_{i}(\cdot, \cdot)\right), i = 1, \dots, n \right\} \text{ where } \widetilde{T}_{i} = T_{i} \wedge C_{i}, \ \Delta_{i} = \mathbb{1}\left\{ T_{i} \leq C_{i} \right\}$

▶ Indicator of "observed event occurrence" in (s, s + t]:

$$\widetilde{D}_i(s,t) = 1\!\!1\{s < \widetilde{T}_i \le s+t, \Delta_i = 1\} = \left\{egin{array}{ccc} 1 & : ext{ event occurred} \ 0 & : ext{ event did not occur} \ & ext{ or censored obs.} \end{array}
ight.$$

► Inverse Probability of Censoring Weighting (IPCW) estimator:

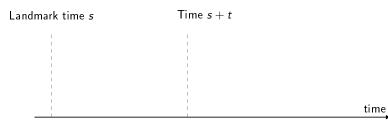
$$\widehat{\mathsf{PE}}_{\pi}(s,t) = \frac{1}{n} \sum_{i=1}^{n} \widehat{W}_{i}(s,t) \left\{ \widetilde{D}_{i}(s,t) - \pi_{i}(s,t) \right\}^{2}$$

and

$$\widehat{R}^2_{\pi}(s,t) = 1 - rac{\widehat{PE}_{\pi}(s,t)}{\widehat{PE}_0(s,t)}$$

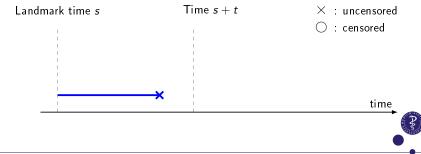
$$\widehat{W_i}(s,t) = + +$$

with $\widehat{G}(u|s)$ the Kaplan-Meier estimator of $\mathbb{P}(C > u|C > s)$.



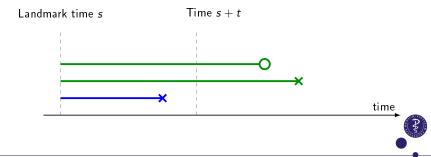
$$\widehat{W}_i(s,t) = rac{1\!\!1 \{s < \widetilde{T}_i \le s+t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} + +$$

with $\widehat{G}(u|s)$ the Kaplan-Meier estimator of $\mathbb{P}(C > u|C > s)$.



$$\widehat{W_i}(s,t) = \frac{1\!\!1\{s < \widetilde{T}_i \le s+t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} + \frac{1\!\!1\{\widetilde{T}_i > s+t\}}{\widehat{G}(s+t|s)} +$$

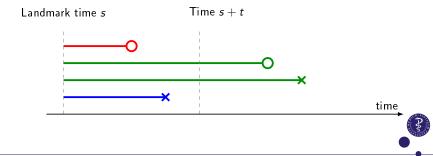
with $\widehat{G}(u|s)$ the Kaplan-Meier estimator of $\mathbb{P}(C > u|C > s)$.



Slide 17/29 — P Blanche et al.

$$\widehat{W_i}(s,t) = \frac{\mathbbm{1}\{s < \widetilde{T}_i \le s+t\}\Delta_i}{\widehat{G}(\widetilde{T}_i|s)} + \frac{\mathbbm{1}\{\widetilde{T}_i > s+t\}}{\widehat{G}(s+t|s)} + \mathbf{0}$$

with $\widehat{G}(u|s)$ the Kaplan-Meier estimator of $\mathbb{P}(C > u|C > s)$.



Slide 17/29 — P Blanche et al.

Asymptotic i.i.d. representation

Lemma: Assume that the censoring time C is independent of $(T, \eta, \pi(\cdot, \cdot))$ and let θ denote either PE_{π} , R_{π}^2 or a difference in PE or R_{π}^2 , then

$$\sqrt{n}\left(\widehat{\theta}(s,t) - \theta(s,t)\right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \mathsf{IF}_{\theta}(\widetilde{T}_{i},\Delta_{i},\pi_{i}(s,t),s,t) + o_{p}(1)$$

where $\mathsf{IF}_{ heta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t)$ being :

- ▶ zero-mean i.i.d. terms
- easy to estimate (using Nelson-Aalen & Kaplan-Meier)

Pointwise confidence interval (fixed s)

• Asymptotic normality:

$$\sqrt{n}\Big(\widehat{\theta}(s,t)-\theta(s,t)\Big) \xrightarrow{\mathcal{D}} \mathcal{N}\left(0,\sigma_{s,t}^{2}\right)$$

• 95% confidence interval:

$$\left\{\widehat{\theta}(s,t)\pm z_{1-\alpha/2}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}$$

where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of $\mathcal{N}(0,1)$.

• Variance estimator:

$$\widehat{\sigma}_{s,t}^2 = \frac{1}{n} \sum_{i=1}^n \left\{ \widehat{\mathsf{IF}}_{\theta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t) \right\}^2$$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

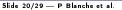
Computation of $\widehat{q}_{1-\alpha}^{(\mathcal{S},t)}$ by the simulation algorithm

1 For b = 1, ..., B, say B = 4000, do:

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

1 For b = 1, ..., B, say B = 4000, do:



$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

1 For
$$b = 1, ..., B$$
, say $B = 4000$, do:
1 Generate $\{\omega_1^b, ..., \omega_n^b\}$ from n i.i.d. $\mathcal{N}(0, 1)$.
2 Using the plug-in estimator $\widehat{\mathsf{IF}}_{\theta}(\cdot)$, compute:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n \quad \frac{\widehat{\mathsf{IF}}_{\theta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t)}{\widehat{\sigma}_{s,t}}$$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

1) For
$$b = 1, ..., B$$
, say $B = 4000$, do:
1) Generate $\{\omega_1^b, ..., \omega_n^b\}$ from n i.i.d. $\mathcal{N}(0, 1)$.
2) Using the plug-in estimator $\widehat{\mathsf{IF}}_{\theta}(\cdot)$, compute:

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i^b \frac{\widehat{\mathsf{IF}}_{\theta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t)}{\widehat{\sigma}_{s,t}}$$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

1 For
$$b = 1, ..., B$$
, say $B = 4000$, do:
1 Generate $\{\omega_1^b, ..., \omega_n^b\}$ from n i.i.d. $\mathcal{N}(0, 1)$.
2 Using the plug-in estimator $\widehat{\mathsf{IF}}_{\theta}(\cdot)$, compute:

$$\Upsilon^b = \sup_{s \in \mathcal{S}} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i^b \frac{\widehat{\mathsf{IF}}_{\theta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t)}{\widehat{\sigma}_{s, t}} \right|$$

$$\left\{\widehat{\theta}(s,t)\pm\widehat{\boldsymbol{q}}_{1-\alpha}^{(\mathcal{S},t)}\frac{\widehat{\sigma}_{s,t}}{\sqrt{n}}\right\}, \quad s\in\mathcal{S}$$

Computation of $\widehat{q}_{1-\alpha}^{(S,t)}$ by the simulation algorithm (\approx Wild Bootstrap):

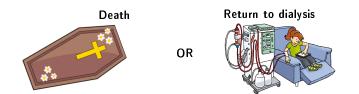
1 For
$$b = 1, \ldots, B$$
, say $B = 4000$, do:
1 Generate $\{\omega_1^b, \ldots, \omega_n^b\}$ from n i.i.d. $\mathcal{N}(0, 1)$.
2 Using the plug-in estimator $\widehat{\mathsf{IF}}_{\theta}(\cdot)$, compute:
$$\Upsilon^b = \sup_{s \in S} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \omega_i^b \frac{\widehat{\mathsf{F}}_{\theta}(\widetilde{T}_i, \Delta_i, \pi_i(s, t), s, t)}{\widehat{\sigma}_{s,t}} \right|$$
2 Compute $\widehat{q}_{1-\alpha}^{(S,t)}$ as the $100(1-\alpha)$ th percentile of $\{\Upsilon^1, \ldots, \Upsilon^B\}$

DIVAT sample

- Population based study of kidney recipients (n=4,119)
- Split the data into training (2/3) and validation (1/3) samples

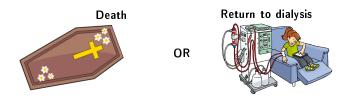
DIVAT sample

- Population based study of kidney recipients (n=4,119)
- Split the data into training (2/3) and validation (1/3) samples
- T: time from 1-year after transplantation to graft failure which is:



DIVAT sample

- Population based study of kidney recipients (n=4,119)
- Split the data into training (2/3) and validation (1/3) samples
- T: time from 1-year after transplantation to graft failure which is:

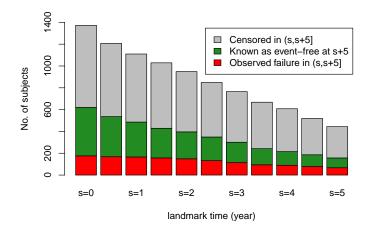


- Censoring due to:
 - delayed entries: 2000-2013
 - end of follow-up: 2014
- Baseline covariates: age, sex, cardiovascular history
- Longitudinal biomarker (yearly): serum creatinine

Descriptive statistics & censoring issue

•
$$s \in S = \{0, 0.5, \dots, 5\}$$

• t = 5 years



Joint model

► Longitudinal

$$log \left[Y_i(t_{ij}) \right] = (\beta_0 + b_{0i}) + \beta_{0,age} AGE_i + \beta_{0,sex} SEX_i + (\beta_1 + b_{1i} + \beta_{1,age} AGE_i) \times t_{ij} + \epsilon_{ij} = \mathbf{m}_i(t) + \varepsilon_{ij}$$

Joint model

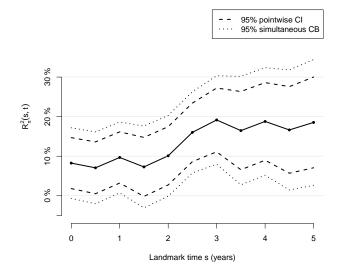
► Longitudinal

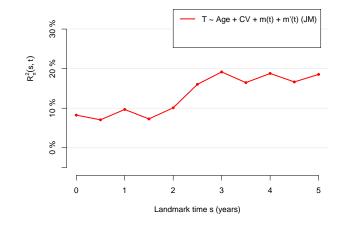
$$log \left[Y_i(t_{ij}) \right] = (\beta_0 + b_{0i}) + \beta_{0,age} AGE_i + \beta_{0,sex} SEX_i + (\beta_1 + b_{1i} + \beta_{1,age} AGE_i) \times t_{ij} + \epsilon_{ij} = \mathbf{m}_i(t) + \varepsilon_{ij}$$

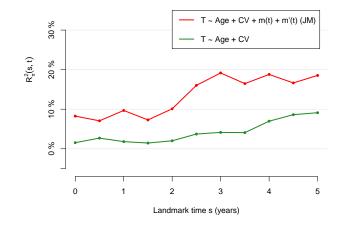
► Survival (hazard)

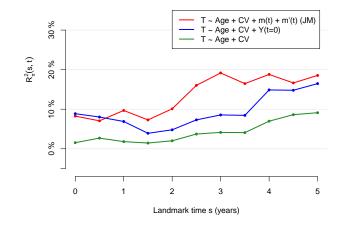
$$h_i(t) = h_0(t) \exp \left\{ \gamma_{age} AGE_i + \gamma_{CV} CV_i + \alpha_1 \mathbf{m}_i(t) + \alpha_2 \frac{d\mathbf{m}_i(t)}{dt} \right\}$$

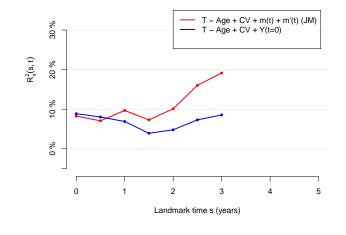
(fitted using 📿 package JM)

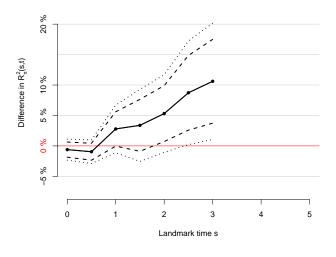


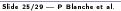


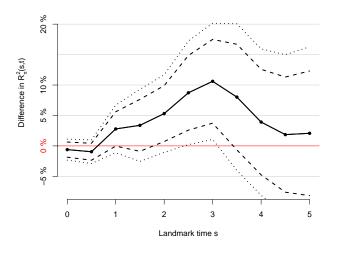




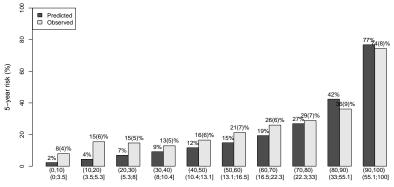








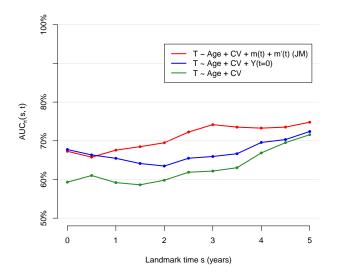
Calibration plot (example for s = 3 years)



Risk groups (quantile groups, in %)

Slide 26/29 — P Blanche et al.

Area under the ROC(s, t) curve vs s



Summing up

► R²-type curve

- summarizes calibration and discriminating simultaneously
- has an understandable trend

► Simple model free inference

- predictions can be obtained from any model
- we do not assume any model to hold
- allows fair comparisons of different predictions
- ► The method accounts for:
 - Censoring
 - Dynamic setting (the at risk population changes)

Discussion

- The strong calibration assumption allows different interesting interpretations:
 - Explained variation
 - Correlation
 - Mean risk difference
- Unfortunately
 - the strong calibration cannot be checked (curse of dimensionality)
- However
 - weak and strong definitions are closely related:
 - strong calibration implies weak calibration
 - weak calibration can "often" be seen as a reasonable approximation of strong calibration in practice
 - weak calibration can be assessed (plots)

Discussion

- The strong calibration assumption allows different interesting interpretations:
 - Explained variation
 - Correlation
 - Mean risk difference
- Unfortunately
 - the strong calibration cannot be checked (curse of dimensionality)
- However
 - weak and strong definitions are closely related:
 - strong calibration implies weak calibration
 - weak calibration can "often" be seen as a reasonable approximation of strong calibration in practice
 - weak calibration can be assessed (plots)

Thank you for your attention!