

EPICLIN 2015, Montpellier

Introduction

--,-----

Methode

P P - - - - -

Conclusio

Références

Quel seuil de discrimination pour un test pronostique à des fins de médecine stratifiée ?

Extension du principe de maximisation de l'utilité espérée au contexte pronostique avec données censurées

E. Dantan¹, Y. Foucher¹, M. Giral² & P. Tessier¹

(Etienne.Dantan@univ-nantes.fr)

¹EA 4275 SPHERE, Université de Nantes, ²Inserm UMR1064, ITUN, CHU Nantes

22 mai 2015

Contexte: Transplantation rénale

Introduction Objectifs

,

Méthode

Application

Conclusio

Référenc

Receveurs d'un rein retournent en dialyse après la survenue d'un échec de greffe

Comment prédire un échec de greffe?

Par identification d'un marqueur pronostique

Kidney Transplant Failure Score (KTFS) (Foucher et al.,2010)

- → Pronostic du retour en dialyse à 8 ans post-transplantation
- → Calculé à partir de patients de la cohorte observationnelle DIVAT (www.divat.fr)
- → AUC de la courbe ROC dépendante du temps = 0.77 (C195%=[0.73-0.80])

Pourquoi prédire un échec de greffe?

Introduction

Pronostic à des fins de médecine stratifiée

- Mise en place d'actions thérapeutiques ciblées en fonction du risque individuel : haut risque (HR), bas risque (BR)
- Processus décrit à l'aide d'un arbre de décision

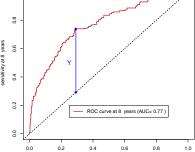
- Patients BR : prise en charge de référence
- Patients HR : prise en charge alternative
 - → Gain en survie greffon
 - → Détérioration de la qualité de vie

Choix d'un seuil optimal du test

Introduction

Test pronostique pour la pratique médicale

- Quels patients peuvent être considérés HR ou BR de connaître l'événement d'intérêt?
- \Rightarrow Identifier un seuil κ sur le marqueur pronostique continu KTFS
 - Patients HR : $KTFS > \kappa$
 - Patients BR : $KTFS < \kappa$
 - Réponse dépend du scénario de prise en charge envisagée
 - Nature des conséquences des choix médicaux
 - Poids relatif des coûts et des bénéfices associés à la décision


Approche classique pour déterminer un seuil

Index de Youden (Youden, 1950)

Objectifs
Méthodes
Application
Conclusion

Introduction

• Seuil maximisant la somme de la sensibilité et de la spécificité

1-specificity at 8 years

- Approche purement statistique ignorant :
 - conséquences des choix
 - perceptions des patients

⇒ Comment intégrer les conséquences et leurs valeurs ?

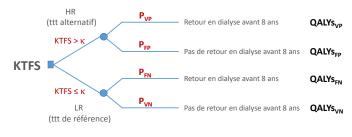
Objectifs

Introduction
Objectifs
Méthodes
Application
Conclusion

- Déterminer un seuil de discrimination optimal pour un marqueur pronostique
- En tenant compte de la perception subjective des patients pour les résultats des choix médicaux

Démarches

- S'appuyer sur des outils des théories de la décision (UE) et de l'évaluation économique (QALYs)
- Illustration à partir du KTFS et du risque de retour en dialyse


Méthodes

Utilité espérée (UE_{τ})

UE : théorie dominante pour la décision médicale

- sélectionne l'action qui maximise l'espérance d'utilité
- pondération des résultats de décision médicale par leur "utilité" (i.e. mesure de l'intensité des préférences)
- en diagnostic : $UE \Rightarrow$ en pronostic : UE_{τ}

$$UE_{\tau}(\kappa) = \sum_{k \in \{VP, FP, FN, VN\}} P_k \times QALYs_k$$

Seuil optimal $\kappa \Rightarrow$ Maximisation de l'UE

Méthodes

Calcul des probabilités P_k

Notations:

• *n* : nombre de patients

T : temps de survenue de l'échec de greffe

• C: temps de censure

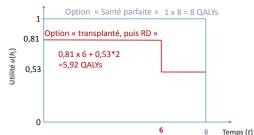
$$\Rightarrow Y = min(T, C)$$

 \bullet au : temps de pronostic

Exemple des VP

$$P_{VP} = P(KTFS > \kappa, T \le \tau)$$

$$= n^{-1} \sum_{i=1}^{n} \frac{\mathbb{1}\{ktfs_{i} > \kappa, y_{i} \le \tau, t_{i} \le c_{i}\}}{\hat{S}_{c}(y_{i})}$$


Le concept des QALYs

Utilité d'un état de santé

- Méthode d'estimation : 'Standard gamble'
- Utilisation de mesures d'utilité publiées
 - Santé parfaite : u = 1 ; Décès : u = 0
 - Patient transplanté u = 0.81 (*Liem et al., 2008*)
 - Retour en dialyse u = 0.53 (*Girardi et al., 2004*)

Quality-Adjusted Life-Years (QALYs)

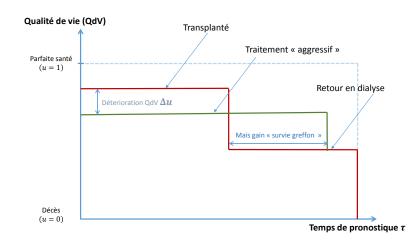
• Mesure d'utilité sur une durée de vie et une qualité de vie

- -,---

Méthodes

Applicatio

Conclusion


Les QALYs du suivi personnalisé

Objectifs

Méthodes

Applicatio

Conclusio

Exemple: Transplantation rénale

Introductio Objectifs

Máileada

Methode

Application

, .pp...oa...o

	Effet qualité de			Proportion de	Capacités pronostiques			
	vie	Effet survie du greffon	Seuil c	patients HR	Se(8)	Sp(8)	VPP(8)	<i>VPN</i> (8)
	$u_{HR} = 0.95 u_{BR}$ $(\Delta u = 5\%)$	50% gain	15.33	0%	0%	100%	100%	85%
ľ		20% gain	15.33	0%	0%	100%	100%	85%
		10% gain	15.33	0%	0%	100%	100%	85%
	$u_{HR} = 0.99 u_{BR}$ $(\Delta u = 1\%)$	50% gain	5.76	8%	26%	98%	59%	88%
1		20% gain	4.63	22%	52%	84%	36%	91%
		10% gain	15.33	0%	0%	100%	100%	85%
	$u_{HR} = u_{BR}$ $(\Delta u = 0)$	50% gain	1.23	100%	100%	0%	15%	100%
		20% gain	1.23	100%	100%	0%	15%	100%
		10% gain	1.23	100%	100%	0%	15%	100%
	Index de Youden		4.07	38%	67%	76%	33%	93%

Conclusion

Introduction Objectifs

Máileada

......

Conclusion

- Approche par analyse de décision pertinente dans un contexte pronostique
 - Bâtie sur
 - des probabilités jointes adaptées aux données censurées
 - des mesures d'utilité liées au temps dépendante du temps (QALYs)
 - Utile pour
 - déterminer un seuil optimal
 - étudier l'utilité clinique d'un marqueur (bénéfice net)
 Approche ne conduit pas systématiquement à un seuil
- Seuil optimal κ peut-être \neq de celui obtenu par Youden
- Implémentation dans le package ROCt (www.divat.fr)

Conclusion

Introduction

Máthada

A It At

Conclusion

Conclusio

- Seuil optimal dépend des préférences et de l'incertitude thérapeutique
 - Requiert des hypothèses sur les conséquences des choix médicaux
 - Inhérent à la médecine personnalisée / Youden insensible à cet aspect
- Perspectives : Prendre en compte d'autres points de vue (point de vue collectif intégrant les coûts de santé)

Références

Introduction Objectifs Méthodes Application Conclusion

Références

Foucher Y, Daguin P, Akl A, Kessler M, Ladriere M, Legendre C, et al. A clinical scoring system highly predictive of long-term kidney graft survival. *Kidney Int.* 2010;78(12):1288-94.

Girardi V, Schaedeli F, Marti HP, Frey FJ, Uehlinger DE. The willingness of patients to accept an additional mortality risk in order to improve renal graft survival. *Kidney Int.* 2004;66(1):375-82.

Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. *Biometrics*. 2001;56(2):337-44.

Liem YS, Bosch JL, Hunink MG. Preference-based quality of life of patients on renal replacement therapy: a systematic review and meta-analysis. *Value Health*. 2008;11(4):733-41.

Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32?5.

Merci pour votre attention