

A joint survival longitudinal approach to better assess the etiological role of risk factors of kidney transplant graft failure

EA 4275 - bioStatistics, Pharmacoepidemiology & Human sciEnces REsearch (SPHERE), Nantes University, 1 rue Gaston Veil, 44035 Nantes, France Inserm U1064, Transplantation, Urology and Nephrology Institute (ITUN), 30 bd Jean Monnet, 44093 Nantes, France *marie-cecile.fournier@univ-nantes.fr

INTRODUCTION

- Serum creatinine is the simplest biomarker routinely measured manage kidney transplant recipient
- Kidney graft failure (return to dialysis or death with a fuil graft) is usually preceded by an increase of serum creatinin
- Risk factors of graft failure are well described (Pascual 2002) 2014) but their own etiological associations are not well k **Hypothesis**: Some factors are correlated with
- Serum creatinine increase, leading to graft loss
- graft failure without changes of serum creatinine in the following seru
- both serum creatinine changes in the follow-up and graft fa independently of serum creatinine evolution

OBJECTIVE

To investigate the etiological role of recipient, donor and tra characteristics on creatinine changes within the follow-up graft failure risk.

MATERIALS AND METHODS

- Study population Transplanted patients were selected fro French prospective DIVAT cohort (www.divat.fr) as follows:
- Adult recipients from living or heart beating deceased done
- Transplanted for the first or second time between 2000 and
- Maintained under Tacrolimus and MMF
- Alive with a functioning graft at 1-year post transplantation

Kidney transplantation outcomes

- \triangleright Longitudinal process: serum creatinine (μ mol/L) measure yearly recorded until the graft failure.
- Survival process: graft failure (first event between return to a second seco and **death** with a functioning graft).
- Statistical analyses We proposed a joint model for longitude time-to-event data (Rizopoulos 2012) allowing correctly mod process, quantify their relationship and avoid the possible bi when Cox model or mixed model are used separately (Asar

RESULTS

Patient sample description (N=2749)

	Missing data	mean \pm SD
Recipient age (years)	0	49.7 ± 13.6
Recipient Body Mass Index (kg/m ²)	10	24.0 ± 4.2
Donor age (years)	1	50.7 ± 15.5
Cold ischemia time (hours)	10	17.8 ± 9.8
3-months serum creatinine (μ mol/L)	38	138.3 ± 53.4
6-months serum creatinine (μ mol/L)	75	$\textbf{136.6} \pm \textbf{53.2}$

MC. Fournier^{*}, E. Dantan, Y. Foucher and M. Giral

	RESULTS	
sured to		
	Recipient men	
notioning	Second transplantation History of diabetes	
Inctioning	History of hypertension	
ne.	History of cardiovascular diseases	
2 ; Debout	History of dyslipidemia	
known.	History of cancer	/
	Human Leukocytes Antigen incompatibility A Positive anticlass I immunisation	BDR (>
	Positive anticlass I immunisation Positive anticlass II immunisation	
	Donor men	
low-up	Status	
ailure risk,	Living donor	
	Cerebrovascular donor death Non cerebrovascular donor death	
	Delayed graft function	
	Acute rejection episode during the first year	
	Follow-up description	
ansplant	Return to dialysis: 278 ; death with a f	unctio
ip and/or	12843 measurements of serum creating	
	Results of the joint model	
	Variables	S
		1-y
om the		relative
		eq (%)
	Level of serum creatinine (µmol/L, for 25% higher)	
iors	Recipient gender (male vs female)	7
d 2013	Donor age (for 10 years higher)	4
	Serum creatinine at 3 months (for 50 μ mol/L higher)	7
ו ב	History of diabetes (yes vs no)	0
	Cold ischemia time (for 10 h higher)	0
	Serum creatinine at 6 months (for 50 μ mol/L higher)	16
ements	Recipient age (for 10 years older)	-2
	Immunisation anti-HLA class I (+ vs -)	0
La dialvaia	Acute rejection episode < 1 year (yes vs no)	6
to dialysis	History of cardiovascular diseases (yes vs no)	0
	Graft rank (second vs first)	0
udinal and		
delize each	INTERPRETATION	
ias observed		
	Variables in gray are only associated	with s
r 2015)	Patients who received a kidney from	
	serum creatinine 4% higher compare	
	Patients with history of diabetes have	e a sti
	creatinine during the follow up. After	5 vea
	orodannio danng tro lonow ap. / tro	0

These variables are indirectly associated to graft failure, throughout the serum creatinine changes. A patient with a **creatinine level higher** than 25% compared to another patient at the same time, whenever the time of follow-up has **2 fold higher risk of graft failure** (HR=2.14).

Missing data n (%) 0 1674 (60.9) 0 474 (17.2) 0 319 (11.6) 0 2272 (82.6) 0 933 (33.9)
0 474 (17.2) 0 319 (11.6) 0 2272 (82.6)
0 319 (11.6) 0 2272 (82.6)
0 2272 (82.6)
0 933 (33.9)
0 860 (31.3)
0 228 (8.3)
>4) 7 350 (12.8)
66 876 (32.6)
87 792 (29.8)
8 1545 (56.4)
6
418 (15.2)
1309 (47.7)
1016 (37.1)
15 714 (26.1)
0 591 (21.5)

oning graft: 205 (median of 4 values/patient).

Association with			Graft	
serum creatinine at			failure	
year	5-years		risk	
	relative		hazard	
<i>p</i> -value	eq (%)	<i>p</i> -value	ratio	<i>p</i> -value
			2.14	< 0.0001
< 0.0001	7	< 0.0001		
< 0.0001	4	< 0.0001		
< 0.0001	7	< 0.0001		
	15	< 0.0001		
	2	0.0267		
< 0.0001	16	< 0.0001	0.78	<0.0001
< 0.0001	-5	< 0.0001	1.35	< 0.0001
	7	0.0008	1.46	0.0013
< 0.0001	-5	0.0348	1.43	0.0017
	0		1.37	0.0016
	0		1.41	0.0118

- serum creatinine changes. years older donor has a another patient.
- tronger increase of serum ars, their serum creatinine level is 15% higher compared to patients without history of diabetes.

INTERPRETATION

- history (HR=1.37).
- creatinine changes and the graft failure risk (in blue).

CONCLUSION

- methodological concepts.
- ▷ The whole serum creatinine trajectory is considered.
- quantified.

\blacktriangleright Biological knowledge allows causality \Rightarrow etiological role

REFERENCES

- Epidemiology, 2015.
- Applications in R. CRC Press, 2012.
- transplantation. Kidney International, 2015.

Direct associations with graft failure risk are identified in red. ▷ For instance, patients with history of cardiovascular disease have the same level of serum creatinine during the follow up but they are at higher risk of graft failure compared to patients without cardiovascular

Some variables are associated independently with both the serum

▷ Ex: Immunized patients have a serum creatinine 7% higher compared to non immunized patients after 5 years. However, after adjustment on serum creatinine changes, immunized patients are still at higher risk of graft failure compared to non immunized patients (HR=1.46).

This suitable model enhances the clinical message respecting

Graft failure risk is adjusted on serum creatinine change.

Serum creatinine changes and graft failure risk relationship is

 \triangleright Debout et al. (2014): cold ischemia time (CIT) = graft failure risk factor. Our study: CIT $\Rightarrow \nearrow$ serum creatinine \Rightarrow graft failure.

Physicians should pay a particular attention such to elderly or immunized recipients, second transplant, patients with history of cardiovascular disease, those for which an acute rejection was occurred. For these patients, the isolated monitoring of serum creatinine (adjusted) did not appear useful to evaluate the risk of graft failure.

M Pascual, T Theruvath, T Kawai, et al. Strategies to improve long-term outcomes after renal transplantation. The New England journal of medicine, 2002.

Z Asar, J Ritchie, P A Kalra, and P J. Diggle. Joint modelling of repeated measurement and time-to-event data: an introductory tutorial. International Journal of

D Rizopoulos. Joint Models for Longitudinal and Time-to-Event Data: With

A Debout, Y Foucher, K Trébern-Launay, et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal