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Introduction 

The use of microarray technology has revolutionized the identification of 

molecular signatures for the prediction of patient outcome. The samples 

(blood, urine, etc.) are collected under the same experimental conditions (event-

free) and the individuals are followed up in order to identify features predictive of 

the event. The time of the event may be observed or not (right-censored). 

The Cox model with lasso penalty appeared to be a reference a method in this 

context. Schumacher (2007) demonstrated that the 0.632+ estimator of the 

prediction error is an interesting indicator for evaluating and comparing different 

models. It takes into account overfitting without splitting the available data into 

training and validation sets. Nevertheless, 3 limitations should be considered. 

 The tuning parameter is defined using the full data (5-fold cross-validation), 

while the selection of the model complexity has to be included in each 

bootstrap iteration in order to avoid overoptimistic results. 

 The prediction error can be used for model comparisons, but it is not a 

meaningful indicator for biologists or clinicians. 

 The prediction error is based on the regression residuals and therefore 

depends on the incidence of the event, but the sample may not necessarily 

represent the targeted population.  

False Negative Rate False Positive Rate 

Apparent 𝐹𝑁𝑅𝑎,𝜏(𝑐) 𝐹𝑃𝑅𝑎,𝜏(𝑐) 
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Objective 

We proposed a 0.632+ estimator of the area under the time-dependent Receiver 

Operating Characteristic (ROC) curve (Heagerty, 2000). The method is designed 

for the analysis of censored and/or truncated survival data. 

The Cox model with lasso penalty 

Let 𝑋 be the vector of the 𝑃 feature expressions and β the associated regression 

coefficients. Let 𝑇𝑗  be the time of the event occurrence for the individual 𝑗 

𝑗 = 1, … , 𝑁 . The hazard function is: 

 ℎ(𝑡𝑗|𝑥𝑗) = ℎ0 𝑡𝑗 exp (𝛽𝑥𝑗 
𝜂𝑗

) 

The lasso (Tibshirani, 1996) shrinks the regression coefficients towards zero by 

penalizing the partial likelihood by the sum of their absolute value multiplied the 

tuning parameter 𝜆:  

𝛽 = arg 𝑚𝑎𝑥 𝑙 𝛽 −  𝜆   𝛽𝑝

𝑃

𝑝=1

 

 We proposed the use of the cross-validation algorithm recently reported by 

Goeman (2011) that efficiently estimates 𝜆. 

The ability of the score 𝛈 to predict the event up to time 𝝉  

If 𝜂𝑗 > 𝑐 then the event is predicted before 𝜏.The false negative and positive 

rate are respectively: 
 

𝐹𝑁𝑅𝜏 𝑐 = {𝐺 𝑐 − 𝑆 −∞, 𝜏 + 𝑆 𝑐, 𝜏 } {1 − 𝑆 −∞, 𝜏 }  
 

𝐹𝑃𝑅𝜏 𝑐 = 𝑆(𝑐, 𝜏) 𝑆(−∞, 𝜏)  

where 𝐺(𝑐) is the empirical distribution function and 𝑆(𝑐, 𝜏) is the joint bivariate 

survival distribution of (𝜂, 𝑇) estimated using the Akritas estimator involved in the 

Heagerty framework (2000). 

The principle of the iterative bootstrap procedure is to estimate the regression 

parameters (1) and the associated value of 𝜆 for each bootstrap sample. The 

corresponding estimations of (2) and (3) allow to obtain the apparent error rates 

by performing the average over all the bootstrap sample. These estimations (2) 

and (3) can also be performed for each sample based on the patients not 

included in the bootstrap sample. The average of these values gives the 

bootstrap cross-validation (BCV) error rates. 

(1) 

(2) 

(3) 

The 0.632+ estimator 

The no-information rates respectively associated with the FNR and FPR may be 

estimated using all the data and considering the independence between 𝜂 and 𝑇:  

𝛾𝑁,𝜏(𝑐) =  1 − 𝛾𝑃,𝜏(𝑐) =  𝐺 𝑐 . These no-information probabilities are used 

to define the overfitting rates. For 𝐾 = (𝑁, 𝑃) : 
 

𝑟𝐾,𝜏 𝑐 = {𝐹𝐾𝑅𝑏,𝜏 𝑐 − 𝐹𝐾𝑅𝑎,𝜏 𝑐 } {𝛾𝐾,𝜏(𝑐) − 𝐹𝐾𝑅𝑎,𝜏 𝑐 }  

We assigned these rates to 0 for negative values and to 1 for values higher than 

1. The 0.632+ estimations of the FKR, 𝐾 = (𝑁, 𝑃),  are thus defined by: 
 

   𝐹𝐾𝑅.632,𝜏 𝑐 = 1 − 𝜓 𝑟𝐾,𝜏 𝑐 𝐹𝐾𝑅𝑎,𝜏 𝑐 +𝜓 𝑟𝐾,𝜏 𝑐  𝐹𝐾𝑅𝑎,𝜏 𝑐  

where 𝜓 𝑥 = 0.632/ 1 − 0.368𝑥 . The corresponding 0.632+ ROC curve 

for a prognostic up to time 𝜏 is 𝐹𝑃𝑅.632,𝜏 , 1 − 𝐹𝑁𝑅.632,𝜏, 𝑐 ∈ ℛ . 

(4) 

(5) 

Proposition of a R package 

This method has been implemented in an R package called ROC632 available 

at www.divat.fr/en/softwares or upon request from authors. 

Validation by simulations 

Different values of 𝑁 were used: 60, 125 and 250. Only the results for 𝑁 = 250 

are presented in the following table. The times-to-event were simulated using a 

Weibull PH model. The feature expressions were obtained by assuming 

independent standard normal distributions. The censoring times were simulated 

independently respecting Exponential distributions to obtain three different 

censoring rates at 6 months: 30, 50 and 70%. We distinguished the 3 following 

scenarios: 

 Total overfitting. Among 750 features, no feature is associated with the 

time-to-event, the true value of the AUC is 0.5. 

 No overfitting. Among 3 features, 2 features are associated with the time-

to-event, the true value of the AUC is obtained by using the apparent 

estimator. 

 High overfitting. Among 750 features, 2 features are associated with the 

time-to-event. We added 747 features independently associated with the 

time-to-event to the previous scenario. The true value of the AUC is thus 

similar to the apparent estimation in the second scenario. 

For each possible combination of the overfitting levels, sample sizes and 

censoring rates, 250 samples were simulated. 100 bootstrap iterations were used 

for each simulated sample.  

Overfitting level Censoring rate Apparent 0.632+ 
 

Total 

(0/750) 

0.3 0.799 (0.035) 0.521 (0.046) 

0.5 0.777 (0.062) 0.516 (0.054) 

0.7 0.693 (0.121) 0.519 (0.067) 
 

No overfitting 

(2/3) 

0.3 0.838 (0.032) 0.830 (0.033) 

0.5 0.836 (0.033) 0.824 (0.035) 

0.7 0.828 (0.047) 0.806 (0.051) 
 

High overfitting 

(2/750) 

 

0.3 0.811 (0.027) 0.843 (0.025) 

0.5 0.789 (0.037) 0.825 (0.034) 

0.7 0.729 (0.060) 0.766 (0.059) 

Table: Mean and standard deviation (between brackets) of the time 

dependent area under the ROC curves at to 6 months 

Adequate correction 

of the overfitting 

No correction 

when no overfitting 
Adequate correction 

of the overfitting 

Warning: These adequate estimations were also observed for 𝑁 =125 with 30% 

of censoring. For the worst situations (lower sample sizes and/or higher 

censoring rates), the 0.632+ estimator underestimated the prognostic capacity. 

The application to the DLBCL study 

Rosenwald (2002) evaluated tumor samples from 240 DLBCL (diffuse large-B-

cell lymphoma) patients treated with anthracycline-based therapy. The full dataset 

was split into training (𝑁=160) and test (𝑁=80) sets, which is associated to an 

increase of the type II error. 

The overfitting was high with an apparent AUC around 0.95. The AUCs obtained 

by using the 0.632+ estimator were between 0.70 and 0.65 (depending on the 

prognostic time between 2 and 14 years). This illustrates the utility of this 

signature to predict mortality up to 14 years, but it also illustrates that this 

signature alone is not sufficient for medical decision-making. Indeed, a patient 

who will die before 10 years has a 32% chance of having a score lower than a 

patient who will be alive at this time. 

Figure: AUC according to the prognostic times (DLBCL data) 
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