A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA ANALYSIS OF THE EVOLUTION OF KIDNEY TRANSPLANT RECIPIENTS

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

yohann.foucher@iurc.montp.inserm.fr University of Montpellier 1, France

ISCB - Geneva 2006

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ●

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Outline

Introduction

Semi-Markov model

Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients

Data and model Results

Concluding remarks

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

Introduction

- Multistate approaches are becoming increasingly used for the analysis of longitudinal data.
- Semi-Markov models explicitly define distributions of waiting times.
- In the follow-up of patients, transition times are known to have occurred in some interval.
- Objective : The development of a flexible semi-Markov model which allow for interval censoring.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

Definitions (1)

• \rightarrow Probability of jumping from the State *i* to the State *j*.

Staying times
$$T_{n+1} - T_n \rightsquigarrow F_{ij}(T_{n+1} - T_n)$$
.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Definitions (2)

Embedded Markov chain

$$P_{ij} = P(X_{n+1} = j | X_n = i)$$

- If state *i* is not persistent then $P_{ij} \ge 0$ and $P_{ii} = 0$.
- If state *i* is persistent then $P_{ij} = 0$ and $P_{ij} = 1$.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Definitions (2)

Embedded Markov chain

$$P_{ij} = P(X_{n+1} = j | X_n = i)$$

- If state *i* is not persistent then $P_{ij} \ge 0$ and $P_{ii} = 0$.
- If state *i* is persistent then $P_{ij} = 0$ and $P_{ij} = 1$.

Distribution of waiting times

•
$$F_{ij}(x) = P(T_{n+1} - T_n \le x | X_{n+1} = j, X_n = i).$$

• $F_{ij}(x) = F^{(ij)}(x, \varphi_{ij}).$

$$\implies S_{ij}(x), f_{ij}(x) \text{ et } \lambda_{ij}(x)$$

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

・ロト・西・・田・・田・・日・

Loglikelihood (1)

Contribution of a transition exactly observed δ_{hr}^{E}

Let $d_{h,r} = T_{h,r+1} - T_{h,r}$, the waiting time in the state $X_{h,r}$ before jumping to the state $X_{h,r+1}$.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model

Definitions

Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

Loglikelihood (2)

Contribution of a right-censored transition δ_{hr}^{R}

Let $d_{h,r}^0$ be a value such that if $d_{h,r}^0 < d_{h,r}$ then $d_{h,r}^0$ is observed and $d_{h,r}$ is not.

$$P(d_{h,r} > d_{h,r}^{0} | X_{h,r} = i)$$

$$= \sum_{j \neq i} P(X_{h,r+1} = j | X_{h,r} = i) P(d_{h,r} > d_{h,r}^{0} | X_{h,r+1} = j, X_{h,r} = i)$$

$$= \sum_{j \neq i} P_{ij} \int_{d_{h,r}^{0}}^{\infty} f_{ij}(u) du = \sum_{j \neq i} P_{ij} S_{ij}(d_{h,r}^{0})$$

・ロト・(型ト・ミト・ミト ヨー うへの

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model

Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Loglikelihood (3)

Contribution of a interval-censored transition $\delta_{h,r}^{l}$

Let $d_{h,r}^1$ be a value such that if $d_{h,r}^1 > d_{h,r}$ then $d_{h,r}^1$ is observed and $d_{h,r}$ is not.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model

Definitions Loglikelihood

Modelling assumptions

Kidney transplant recipients Data and model Results

Loglikelihood (4)

Contribution of an initial observation for the subject h

By defining $z_{h,0j}$, the vector of covariates associated with the initial state *j* for the h^{th} subject, the usual multinomial logistic regression can be written as :

$$P(X_{h,1} = j) = \frac{exp(\gamma_{0j} + \beta_{0j}z_{h,0j})}{\sum_{k=1}^{c} exp(\gamma_{0k} + \beta_{0k}z_{h,0k})} \text{ for } j = 1, ..., c$$

with $\gamma_{0c} = 0$ and $\beta_{0c} = 0$, in order to obtain $\sum_{j=1}^{c} \pi_{0j} = 1$.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model

Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

Loglikelihood (5)

.

$$In\mathcal{L} = \sum_{h} \left\{ \gamma_{0}X_{h,1} + \beta_{0}X_{h,1}Z_{h,0}X_{h,1} - In(\sum_{i=1}^{c} exp(\gamma_{0i} + \beta_{0i}Z_{h,0}X_{h,1})) + \sum_{ij}\sum_{X_{h,r}=i,X_{h,r+1}=j} \left\{ \delta_{h,r}^{E} \left[In P_{ij} + In S_{ij}(d_{h,r}) + In \lambda_{ij}(d_{h,r}) \right] + \delta_{h,r}^{I} \left[In P_{ij} + In(S_{ij}(d_{h,r}^{0}) - S_{ij}(d_{h,r}^{1})) \right] \right\} + \sum_{i}\sum_{X_{h,r}=i} \left\{ \delta_{h,r}^{R} \left[In(\sum_{j \neq i} P_{ij}S_{ij}(d_{h,r}^{0})) \right] \right\}$$

where $\gamma_{0c} = \beta_{0c} = 0$.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Modelling assumptions (1)

Generalised Weibull distribution ($\nu_{ij}, \sigma_{ij}, \theta_{ij} > 0$)

0< θ< v<1

Time

Time

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction Semi-Markov

model

Loglikelihood Modelling assumptions Kidney transplant recipients Data and model Results

Concluding remarks

・ロト・四ト・ヨト ・ヨト・日・ うらう

Modelling assumptions (2)

Incorporation of covariates (PH)

Proportional Hazard (PH) assumption.

 $S_{ij}(x,\eta_{h,ij}) = S_{0,ij}(x)^{exp(\eta_{h,ij})}$

$$\lambda_{ij}(\mathbf{x},\eta_{h,ij}) = \lambda_{0,ij}(\mathbf{x}) exp(\eta_{h,ij})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Respect of the PH assumption. plotting log(-log(S_{ij}(x))) against the survival time x. A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions

Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Kidney transplant recipients (1)

Data description

- Prospective study of kidney transplant recipients (DIVAT).
- ▶ 997 patients and 1980 exact or censored transitions.
- Data were computerized at each checkup visit.
- 5 explanatory variables have been retained :
 - gender (men = 1; women = 0),
 - cold ischemia time (1 if \geq 16 hours and 0 otherwise),
 - year of the transplantation (1 if < 1998 and 0 otherwise),
 - ► recipient age at the time of transplantation (1 if ≥ 55 years of age and 0 otherwise),
 - delayed graft function (1 if \geq 6 days and 0 otherwise).

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Kidney transplant recipients (2)

Multistate structure

- 3-gravity states with two markers :
 - Creatinine clearance (CL)
 - Proteinuria (PR)
- 2-terminal states : chronic rejection of the kidney and death of the patient.

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Results (1)

Covariates associated with the initial probabilities

Transition	Covariate	Estim.	SE	p-value
$0 \rightarrow 1$	Intercept	2.85	0.19	0.0001
$0 \rightarrow 1$	Recipient Gender	-0.39	0.17	0.0226
$0 \rightarrow 1$	Delayed graft function	-0.53	0.17	0.0014
0 ightarrow 2	Intercept	-0.67	0.44	0.1258
0 ightarrow 2	Cold ischemia time	1.13	0.44	0.0092

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Results (2)

Covariates associated with the intensities of transition

Transition	Covariate	Estim.	SE	RR	p-value
$1 \rightarrow 2$	Year of transplant	-0.80	0.12	0.45	0.0001
$1 \rightarrow 3$	Recipient Gender	0.29	0.15	1.34	0.0484
$1 \rightarrow 3$	Year of transplant	-1.20	0.21	0.30	0.0001
2 ightarrow 3	Year of transplant	-0.54	0.12	0.59	0.0001
$3 \to 5$	Recipient age	1.48	0.39	4.41	0.0001

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Results (3)

Parameters of the waiting times distributions

	σ_{ij}		$ u_{ij}$	$ u_{ij}$		θ_{ij}	
Transition	Estim.	ET	Estim.	ET	Estim.	ET	
$1 \rightarrow 2$	36.14	31.97	0.53	0.03	0.24	0.09	
$1 \rightarrow 3$	34.11	65.20	0.52	0.05	0.19	0.15	
2 ightarrow 3	33.40	31.34	0.56	0.03	0.30	0.13	
$3 \to 4$	10.16	1.56	1.49	0.11			
$3\to5$	18.48	47.62	1.14	0.23	1.46	3.75	

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Concluding remarks

Summary of the results

- Multinomial logistic regression usefull in order to identify covariates associated with the initial probabilities.
- ► Parcimony of the generalized Weibull distribution (U or ∩ – shape).

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results

Concluding remarks

Concluding remarks

Summary of the results

- Multinomial logistic regression usefull in order to identify covariates associated with the initial probabilities.
- ► Parcimony of the generalized Weibull distribution (U or ∩ – shape).

Limits of the model and work in progress

 \blacktriangleright Delate the transition 1 \rightarrow 3, even if this transition is informative for clinicians.

$$P_{12}P_{23}\int_{0}^{d_{h,r}}f_{12}(x)f_{23}(d_{h,r}-x)dx$$

- Estimate the cut-off of the markers in order to determine the best states of gravity.
- Construction of an hidden semi-Markov model in order to take into account the short-term fluctuation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ●

A SEMI-MARKOV MODEL FOR INTERVAL-CENSORED DATA

> Y. Foucher, M. Giral, JP. Soulillou, JP. Daures

Introduction

Semi-Markov model Definitions Loglikelihood Modelling assumptions

Kidney transplant recipients Data and model Results